Newton-Product integration for a Two-phase Stefan problem with Kinetics

Authors

Abstract:

We reduce the two phase Stefan problem with kinetic to a system of nonlinear Volterra integral equations of second kind and apply Newton's method to linearize it. We found product integration solution of the linear form. Sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Newton-Product Integration for a Stefan Problem with Kinetics

Stefan problem with kinetics is reduced to a system of nonlinear Volterra integral equations of second kind and Newton's method is applied to linearize it. Product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. An example is provided to illustrated the applicability of the method.

full text

newton-product integration for a two-phase stefan problem with kinetics

we reduce the two phase stefan problem with kinetic to a system of nonlinear volterra integral equations of second kind and apply newton's method to linearize it. we found product integration solution of the linear form. sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.

full text

newton-product integration for a stefan problem with kinetics

stefan problem with kinetics is reduced to a system of nonlinear volterra integral equations of second kind and newton's method is applied to linearize it. product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. an example is provided to illustrated the applicability of the method.

full text

Nonlinear Two-Phase Stefan Problem

In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.

full text

Solving The Stefan Problem with Kinetics

We introduce and discuss the Homotopy perturbation method, the Adomian decomposition method and the variational iteration method for solving the stefan problem with kinetics. Then, we give an example of the stefan problem with  kinetics and solve it by these methods.

full text

nonlinear two-phase stefan problem

in this paper we consider a nonlinear two-phase stefan problem in one-dimensional space. the problem is mapped into a nonlinear volterra integral equation for the free boundary.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 38  issue 4

pages  853- 868

publication date 2012-12-15

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023